Shape-preserving, multiscale fitting of univariate data by cubic L1 smoothing splines

نویسنده

  • John E. Lavery
چکیده

Bivariate cubic L1 smoothing splines are introduced. The coefficients of a cubic L1 smoothing spline are calculated by minimizing the weighted sum of the L1 norms of second derivatives of the spline and the 1 norm of the residuals of the data-fitting equations. Cubic L1 smoothing splines are compared with conventional cubic smoothing splines based on the L2 and 2 norms. Computational results for fitting a challenging data set consisting of discontinuously connected flat and quadratic areas by Csmooth Sibson-element splines on a tensor-product grid are presented. In these computational results, the cubic L1 smoothing splines preserve the shape of the data while cubic L2 smoothing splines do not.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast Polynomial Spline Approximation for Large Scattered Data Sets via L 1 Minimization

[Her13] F.Hernoux, R.Béarée, L.Gajny, E.Nyiri, J.Bancalin, O.Gibaru, Leap Motion pour la capture de mouvement 3D par spline L1. Application à la robotique. GTMG 2013, Marseille, 27-28 mars 2013 [Gib1899] J. Willard Gibbs, lettre à l’éditeur, Nature 59 (April 27, 1899) 606. [Lav00] J.E. Lavery, Univariate Cubic Lp splines and shape-preserving multiscale interpolation by univariate cubic L1 splin...

متن کامل

Pii: S0167-8396(02)00087-0

We investigate C1-smooth univariate curvature-based cubic L1 interpolating splines in Cartesian and polar coordinates. The coefficients of these splines are calculated by minimizing the L1 norm of curvature. We compare these curvature-based cubic L1 splines with second-derivative-based cubic L1 splines and with cubic L2 splines based on the L2 norm of curvature and of the second derivative. In ...

متن کامل

Constrained Interpolation via Cubic Hermite Splines

Introduction In industrial designing and manufacturing, it is often required to generate a smooth function approximating a given set of data which preserves certain shape properties of the data such as positivity, monotonicity, or convexity, that is, a smooth shape preserving approximation.  It is assumed here that the data is sufficiently accurate to warrant interpolation, rather than least ...

متن کامل

Geometric dual formulation for first-derivative-based univariate cubic L 1 splines

With the objective of generating “shape-preserving” smooth interpolating curves that represent data with abrupt changes in magnitude and/or knot spacing, we study a class of first-derivative-based C1-smooth univariate cubic L1 splines. An L1 spline minimizes the L1 norm of the difference between the first-order derivative of the spline and the local divided difference of the data. Calculating t...

متن کامل

Computationally Efficient Models of Urban and Natural Terrain by Non-iterative Domain Decomposition for L1 Smoothing Splines

In this paper, we propose and validate a computationally efficient non-iterative domain decomposition procedure for calculating bivariate cubic L1 smoothing splines. This domain decomposition procedure involves calculating local L1 smoothing splines individually on overlapping “extended subdomains” that cover the global domain and then creating the global L1 smoothing spline by patching togethe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computer Aided Geometric Design

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2000